Combinatorics, 2016 Fall, USTC

Week 11, November 15 and 17

Poset

Poset: $\mathrm{P}=(\mathrm{X}, \preceq)$
Definition 1. An element $\mathrm{x} \in \mathrm{X}$ is minimal, if x has no predecessor.

Definition 2. $\alpha(P)=$ max size of anti-chain in P. $w(P)=\max$ size of a chain in P .

Fact: The set of all minimal element in P forms an anti-chain of P .
Then \forall poset $\mathrm{P}=(\mathrm{X}, \preceq)$, we have

$$
\alpha(P) \cdot w(P) \geq|X|
$$

Proof. We inductively define a sequence of posets $P_{i}=\left(x_{i}, \preceq\right)$ and a sequence of sets $M_{i} \subset P_{i}$, such that each M_{i} is the seet of minimal elements of P_{i}, and $X_{i}=X-\sum_{j=0}^{i-1} M_{j}$, where $M_{0}=\phi$.

Now suppose we obtain $P_{1}, P_{1}, \ldots, P_{l}$ and $M_{i} \subset P_{i}$ for $1 \leq i \leq l$.
By the Fact, each M_{i} is an anti-chain of P_{i}; since P_{i} is the restricted subposet of P on X_{i}, M_{i} is also an anti-chain of P . So

$$
\left|M_{i}\right| \leq \alpha(P)
$$

It suffices to find a chain $x_{1}<x_{2}<\ldots<x_{l}$ in P , such that $x_{i} \in P_{i}=\left(X_{i}, \preceq\right)$.
If this holds,

$$
X=M_{1} \bigcup M_{2} \bigcup \ldots \bigcup M_{l}
$$

$$
\Longrightarrow|X|=\sum_{i=1}^{l}\left|M_{i}\right| \leq \alpha(P) \cdot l \leq \alpha(P) w(P) .
$$

We claim something stronger holds:
$\forall x \in M_{i+1}$ and $\forall i<l, \exists y \in M$, such that $y<x$.
proof: By definition of M_{i}.

Ramsey Theroem

The order from disorder!

Definition 3. (Erdös-Szekeres Theroem) Consider a squence $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of real number of length n . A subsequence $\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{m}}\right)$ of X , where $i_{1}<i_{2}<\ldots<i_{m}$ is monotone, if either $x_{i_{1}} \leq x_{i_{2}} \leq \ldots \leq x_{i_{m}}$ or $\left(x_{i_{1}} \geq x_{i_{2}} \geq\right.$ $\ldots \geq x_{i_{m}}$.

For example, $(10,9,7,4,5,1,2,3) \longrightarrow(10,9,7,5,1)$
Theorem 4. (Erdös-Szekeres) For any sequence ($x_{1}, x_{2}, \ldots, x_{n^{2}+1}$) of length $n^{2}+1$, there exists one monotone subsequence of length $n+1$.

Proof. Let $X=\left[n^{2}+1\right]$. We define a poset $P=(X, \preceq)$ as following:
$i \preceq j$ if and only if $i \leq j$ and $x_{i} \leq x_{j}$.
It is easy to verify that P indeed is a poset(refecsive antisymmetric \& transitive)

By the previous result that $\alpha(P) \cdot w(P) \geq|X|=n^{2}+1$, we have 2 cases to consider:
case 1: $\alpha(P) \geq n+1$.

So P has an anti-chian of size $\mathrm{n}+1$, say $\left\{i_{1}, i_{2}, . ., i_{n+1}\right\}$. We may assume $i_{1}<i_{2}<\ldots<i_{n+1}$. But each $\left(i_{j}, i_{k}\right)$ is incomparable in P. Thus, assuming $i_{j}<i_{k}$, we see that $x_{i_{j}}>x_{i_{k}}$.

$$
\Longrightarrow x_{i_{1}}>x_{i_{2}}>\ldots>x_{i_{n+1}}
$$

. This is a decreasing subsequence of $\left(x_{1}, x_{2}, \ldots, x_{n^{2}+1}\right)$.
case 2: $w(P) \geq n+1$.
So P has a chain, say $x_{i_{1}} \preceq x_{i_{2}} \preceq \ldots \preceq x_{i_{n+1}}$. By definition, we have $i_{1}<i_{2}<\ldots<i_{n+1}$ and $x_{i_{1}} \leq x_{i_{2}} \leq \ldots \leq x_{i_{n+1}}$. So we have an increasing subsequence of length $n+1$.

Rmk: In fact, the proof shows that we can have a strickly increasing subsequence or a decreasing subsequence.

Exercise: Find examples to show that E-S Thm is best possible.

The Pigeonhole Principle

Let X be a set with at least $1+\sum_{i=1}^{k}\left(n_{i}-1\right)$ elements and let $X_{1}, X_{2}, \ldots, X_{k}$ be disjoint sets forming a partition of X . Then, there exists i, s.t. $|X| \geq n_{i}$.
(1)Two equal degrees.

Theorem 5. Any graph has two vertices of the same degree.

Proof. Let G be a graph with n vertices. The degrees are from 0 to $\mathrm{n}-1$. So the only exceptional case will be that there is exactly one vertex of degree i for $\forall i \in\{0,1, \ldots, n-1\}$. But it is impossible to have a vertex with degree 0 and a vertex with degree $n-1$ at the same time.

Exercise: For $\forall n$, find an n-vertex graph G, which has exactly two veertices with the same degree.

(2)Subsets without divisors.

Question: How large a subset $S \subset[2 n]$ can be such that for $\forall i, j \in S$, we have $i \nmid j \& j \nmid i ?$

Obviously, we can take $S=\{n+1, n+2, \ldots, 2 n\}$ with $|S|=n$.

Theorem 6. For any $S \subset[2 n]$ with $|S| \geq n+1$, there exists $i, j \in S$ such that $i \mid j$.

Proof. For each odd 2k-1, define $S_{2 k-1}=\left\{2^{i} \cdot(2 k-1) \in S\right.$, forsomei $\}$ for some $\mathrm{k}=1,2, \ldots, \mathrm{n}$.

Clearly, $S=\bigcup_{k=1}^{n} S_{2 k-1}$ can be partitioned into n subsets. But $|S| \geq$ $n+1$, by P-P, $\exists k \in[n]$, s.t. $\left|S_{2 k-1}\right| \geq 2$.

(3)Rational approximation.

Theorem 7. Given $n>0$, for any $x \in R$, there is a rational number p / q with $1 \leq q \leq n$ such that $\left|x-\frac{p}{q}\right|<\frac{1}{n q}$.

Proof. Consider $\mathrm{x}>0$, let $\{x\}=x-\lfloor x\rfloor$ be the fractional part of x . Consider $\{i x\}$, for $\mathrm{i}=1,2, \ldots, \mathrm{n}+1$, where are $\mathrm{n}+1$ real numbers in $[0,1)$. Partition $[0,1)$ into n subintervals $\left[0, \frac{1}{n}\right),\left[\frac{1}{n}, \frac{2}{n}\right), \ldots,\left[\frac{n-1}{n}, 1\right)$. By P-P, there are 2 numbers say $\{i x\},\{j x\}$ (let $\{j x\}>\{i x\})$ belonging to the same subinterval.
$\Longrightarrow\{(j-i) x\}=\{j x\}-\{i x\} \in\left[0, \frac{1}{n}\right)$.
Let $\mathrm{q}=\mathrm{j}-\mathrm{i}$, then $q x=p+\epsilon$, where $\epsilon=\{q x\} \in\left[0, \frac{1}{n}\right)$ and $p \in Z$.
$\Longrightarrow x=\frac{p}{q}+\frac{\epsilon}{q}$, where $\left|\frac{\epsilon}{q}\right|<\frac{1}{n q}$.

Erdös-Szekeres Theroem

Theorem 8. For any sequence of $m n+1$ real numbers $\left\{a_{0}, a_{1}, \ldots, a_{m n+1}\right\}$, there is an increasing subsequence of length $m+1$ or a decreasing subsequence of length $n+1$.

Proof. (the second proof)

For each $i \in\{0,1, \ldots, m n\}$, let t_{i} be the maximum length of an increasing subsequence starting at a_{i}. If $\exists \mathrm{i}$, s.t. $t_{i} \geq m+1$,then we are done. So we may assume $t_{i} \in\{1,2, \ldots, m\}$ for $\forall i \in\{0,1, \ldots, m n\}$. By P-P, there exists some $s \in\{1,2, \ldots, m\}$ such that there are at least $\mathrm{n}+1$ many $t_{i}^{\prime} s$ satisfying that $t_{i}=s$. Let these indexes i's be $i_{1}<i_{2}<\ldots<i_{n+1}$.

Claim: $a_{i_{1}} \geq a_{i_{2}} \geq \ldots \geq a_{i_{n+1}}$.
Proof. Otherwise, there $\exists \mathrm{j}$,s.t. $a_{i_{j}}<a_{i_{j+1}}$. Then we would extend the maximal increasing subsequence starting at $a_{i_{j+1}}$, by adding $a_{i_{j}}$, to get an increasing subsequence starting at $a_{i_{j}}$ of length $\mathrm{s}+1$. Therefore, this contradicts $t_{i_{j}}=s$.

Ramsey's Theorem

Fact:(A party of six) Suppose a party has 6 participants. Participants may know each other or not. Then there must be 3 participants who know each other or don't know each other.

Proof. We can construct a graph G on [6]. Each vertex i represents one participants: i and j are adjacent iff they know each other. Then we need to
show that there are 3 vertices in G which form a triangle K_{3} or an independent set I_{3}.

Consider vertex 1. From the point of view of 1.1 is adjacent to ≥ 3 vertices or i not adjacent to ≥ 3 vertices. By symmetry, 1 is adjacent to $2,3,4$. If one of pairs $\{2,3\},\{2,4\},\{3,4\}$ is adjacent, then we have a K_{3}. Otherwise, we have an $I_{3}=\{2,3,4\}$.

Definition 9. A r-edge-coloring of K_{n} is a function $\mathrm{f}: E\left(K_{n}\right) \longrightarrow\{1,2, \ldots, r\}$ which assigns one of the colors $1,2, \ldots, \mathrm{r}$ to each edge of K_{n}.

Definition 10. Suppose there is an r-edge-coloring of K_{n}. A clique in K_{n} is called monochromatic, if all its edges are colored by the same color.

Theorem 11. (Ramsey's Thm(2-colors-version)) Let $k, l \geq 2$ be integers. There exists an integer $N=N(k, l)$, s.t. any 2-edge-coloring of K_{N} (with colors red and blue) has a blue K_{k} or a red K_{l}.

Proof. We will prove by induction on $\mathrm{k}+\mathrm{l}$ that $N=\binom{k+l-2}{k-1}$ will suffice.
Base case: $k+l=4 \Longleftrightarrow k=l=2$. It is trivial.
Assume that it holds for $k^{\prime}+l^{\prime} \leq k+l-1$. Let $N_{1}=\binom{k+l-3}{k-2}, N_{2}=\binom{k+l-3}{k-1}$, and $N=\binom{k+l-2}{k-1}$.

Note that $N_{1}+N_{2}=N$.
Consider any 2-edge-coloring of K_{N}. Consider any vertex x. Let $A=$ $\left\{y \in V\left(K_{n}\right)-\{x\}\right.$: edge xy is blue $\}$ and $B=\left\{y \in V\left(K_{n}\right)-\{x\}\right.$: edge xy is red $\}$. So $|A|+|B|=N-1=N_{1}+N_{2}-1$. Thus, either $|A| \geq N_{1}$ or $|B| \geq N_{2}$.

Case 1: $|A| \geq N_{1}=\binom{k+l-3}{k-2}$.

The vertices of A contains a $K_{\binom{(k-1)+l-2}{(k-1)-1}}$ where edges are blue or red. By induction on this $K_{\substack{(k-1)+l-2 \\(k-1)-1}}$ for the pair $\{k-1, l\}$, so A has a blue K_{k-1} or a red K_{l}. We can add the vertex x to get a blue K_{k}. So we have done.

Case 2: $|B| \geq N_{2}=\binom{k+l-3}{k-1}$.
Similarly.
Definition 12. For $k, l \geq 2$, the Ramsey Number $\mathrm{R}(\mathrm{k}, \mathrm{l})$ denotes the smallest integer N s.t. any 2-edge-coloring of K_{N} has a blue K_{k} or a red K_{l}.

Corollary 1: $R(k, l) \leq\binom{ k+l-2}{k-1}$.
Let us try to understand this definition more:

- $R(k, l) \leq L \Longleftrightarrow$ any 2-edge-coloring of K_{L} has a blue K_{k} or a red K_{l}.
- $R(k, l) \geq M \Longleftrightarrow$ there exists a 2-edge-coloring of K_{M} which has no blue K_{k} nor red K_{l}.

Corollary 2: (Exercise) $R(k, l) \leq R(k-1, l)+R(k, l-1)$.
Fact 1: $R(k, l)=R(l, k)$
Fact 2: $R(2, l)=l$ and $R(k, 2)=k$.
Fact 3: $R(3,3)=6$.
Why? A party of six tells us that $R(3,3) \leq 6$; in the other hand, the following example tells us that $R(3,3)>5$.

Fact 4: $R(3,4)=9$.
Consider the graph:

It has NO K_{3} nor $I_{4} . \Longrightarrow R(3,4)>8$. The fact $R(3,4) \leq 9$ will follow by a theorem which we prove next time.

